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ABSTRACT: Natural organic matter (NOM) dominated electron
transfer has been widely studied in wetlands, freshwater sediments,
and peatlands, in which a diffusion-electron hopping mechanism
consisting of dissolved organic matter (DOM) and particulate
organic matter (POM) was found to mediate electron transfer over
centimeter (cm) distances. However, it remains unclear whether
such long-distance electron transfer also occurs when NOM is
associated with minerals, which form organo-mineral associations
(OMAs) and thus are less mobile and accessible. In this study, we
investigated the roles of DOM and OMAs in transferring electrons
by performing a series of microbial Fe(III)-mineral reduction
experiments over a 2 cm distance. We found that significant
electron transfer only occurred when both DOM and OMAs were
present. Generally, we observed a positive correlation between the relative proportion of DOM and OMAs and the extent of Fe(III)
mineral reduction. However, varying the proportion of DOM showed a stronger effect on the Fe(III)-mineral reduction compared to
OMAs, indicating that DOM played a more critical role in the electron transfer network. Our findings shed new light on how organic
carbon facilitates iron transformation and the associated biogeochemical cycling of nutrients and contaminants in forest soil systems.
KEYWORDS: dissolved organic matter (DOM), organo-mineral associations (OMAs), long-distance electron transfer, Fe(III) minerals

■ INTRODUCTION
Extracellular electron transfer between microbes and terminal
electron acceptors (e.g., SO4

2−, NO3
− or ferric iron (Fe(III))

minerals) under anoxic conditions has been widely studied in
wetlands, freshwater sediments, and peat soils.1−3 Redox-active
natural organic matter (NOM)4 has been considered one of
the most important mediators of extracellular electron transfer
in these systems.5−7 NOM consists of dissolved organic matter
(DOM), particulate organic matter (POM), and organic
matter associated with minerals (i.e., organo-mineral associa-
tions, OMAs).8−11 Although existing in lower concentrations,
DOM can transfer electrons by diffusion with a coefficient of
10−6 cm2 s−1 in the liquid phase, whereas POM and OMAs
possess very low mobility.12 However, previous studies have
shown that POM can interact with DOM via electron hopping,
i.e., electron self-exchange reactions among their redox-active
centers.13 The interaction between DOM and POM can
promote the formation of a network that facilitates long-
distance electron transfer at centimeter (cm) scales.14,15

DOM and OMAs have also been shown to exist in a
dynamic equilibrium with continuous electron exchange,16,17

which highly resembles the diffusion-electron hopping
mechanism for electron transfer over cm distances with
DOM and POM as mediators.15,18 However, thus far, it is

still unclear whether such long-distance electron transfer can
occur within DOM and OMAs. The formation of OMAs
includes coprecipitation, complexation, and adsorption, all of
which increase their stability and protect the organic matter
from decomposition and degradation.19 However, studies have
shown that OMAs are redox-active due to both the functional
groups in the organic matter fraction and the redox-active
centers of the Fe and manganese (Mn) mineral phases.20−22

OMAs are ubiquitous and can contribute up to 90% to the
NOM pool in some soil systems.23 Given the wide existence of
OMAs, a better understanding of their electron transfer
properties and interactions with DOM is needed to improve
our understanding of the electron flow as well as organic
carbon transformation in ecosystems.

In this study, forest soil was used as an example to
investigate the ability of DOM and OMAs in sustaining long-
distance electron transfer processes. Shewanella oneidensis MR-
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1, a well-known Fe(III) mineral-reducing bacterium, was used
as the electron-donating bacterial strain.24 Ferrihydrite
(simplified: Fe(OH)3), an environmentally common Fe(III)
mineral, was used as the terminal electron acceptor. The DOM
and OMAs samples were extracted from a forest soil, mixed at
different ratios, and added as electron mediators in between
the spatially separated S. oneidensis MR-1 and ferrihydrite over
2 cm distance in agar-solidified reactors as described earlier25

and shown in Figure S1. Our objectives in this study were to
(1) evaluate the possibility of electron transfer over cm
distances with a network formed by DOM and OMAs and (2)
determine the relative contribution of DOM and OMAs in
mediating long-distance electron transfer.

■ MATERIALS AND METHODS
Soil Sampling and Separation of DOM and OMAs.

Surface (0−10 cm) soil samples were collected from the
Schönbuch forest in Germany (48°61' N, 9°12' E). The DOM
and OMAs were obtained by washing the soil samples with
Milli-Q water (resistivity 18.2 MΩ·cm), followed by size
separation. Details on the sampling site and the separation
procedure are shown in S1 of the Supporting Information (SI).

DOM and OMA Characterization. The elemental
composition of OMAs was analyzed by inductively coupled
plasma mass spectrometry (ICP-MS) after microwave-assisted
acid digestion. Surface morphology and elemental distribution
of OMAs were probed by scanning electron microscopy
(SEM) combined with energy dispersive X-ray analysis (EDS).
The redox properties of DOM and OMAs were characterized
using a mediated electrochemical method.26 Details of these
analyses are provided in the SI (S2−S4).

Electron Transfer Experiment Setup and Sampling
Procedure. All electron transfer experiments were carried out
in agar-solidified reactors (Figure S1). Briefly, an agar ball
containing 10 mmol L−1 ferrihydrite was positioned in the
center of a Schott bottle. The ball was surrounded by 2% agar
amended with DOM and OMAs as electron mediators. On top
of the agar, 108 cells mL−1 S. oneidensis MR-1 were inoculated
with 10 mM lactate as the electron donor. The electron
transfer distance was 2 cm, and HEPES buffer (30 mM) was
used to maintain the pH at approximately 7. We performed
two sets of experiments. One set was with a fixed DOM
concentration of 50 mg C L−1 but increasing OMA
concentrations from 0 to 1600 mg C L−1. The other set was
with a fixed OMA concentration of 800 mg C L−1 but
increasing DOM concentrations from 0 to 100 mg C L−1.
These concentrations are environmentally relevant according
to previous studies,10,27 and a more detailed discussion can be
found in S8 of the SI. A series of reactors were set up so that
they could be sacrificed over time during the course of the
experiment. The headspace of all reactors was flushed with
dinitrogen gas (N2). For the cultivation of S. oneidensis MR-1,
the synthesis of ferrihydrite, the experimental setup, and the
sampling procedure, refer to the SI (S5−S7).

■ RESULTS AND DISCUSSION
Morphology and Elemental Composition of OMAs.

The extracted OMAs had a particle size of ca. 400 μm as
evidenced by the SEM images (Figures 1 and S2). Analyses
using an elemental analyzer determined a total organic carbon
content of 16.1 ± 1.5% (w/w) in bulk OMAs. Al and Fe were
detected and quantified by ICP-MS at 27.2 and 6.4 mg g−1,

respectively (Figure S3). The overlapping distribution patterns
of carbon (C), oxygen (O), and silica (Si) shown in the EDS
mapping suggests a close association of these elements (Figure
1). Together, the data show the existence of OMAs. Previous
studies revealed that the formation of primary OMAs involved
the binding of functional groups of organic molecules (e.g.,
proteins, cellulose) with the surface of kaolin-group minerals
such as kaolinite (Al2Si2O5(OH)4) or antigorite ((Mg,

Figure 1. SEM micrographs coupled to EDS mapping of three OMA
samples. The pie charts indicate the elemental composition of the
three selected spots as shown on the SEM micrographs. Minor
elements such as sulfur (S), nitrogen (N), and potassium (K)
detected in random spots likely stem from plant and microorganism
residues that are attached to the surface of OMAs.35
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Fe2+)3Si2O5(OH)4) via van der Waals forces and hydrogen
bonds.28−31 In contrast to the primary OMAs complexes,
which usually possess a size of up to 20 μm,32 the OMA
particles found in our samples were about 400 μm, suggesting
the occurrence of secondary aggregation as previously
observed by Christensen.33 Secondary OMAs consist of
primary OMA complexes, macroaggregates, and coprecipitated
organic matter moieties. Therefore, they are less dense and
more reactive, and allow a faster flow of nutrients.33−35

Redox Activities of the Extracted DOM and OMAs.
We used mediated electrochemical reduction and oxidation to
characterize the electron accepting and donating capacity
(EAC and EDC, respectively) of the extracted DOM and
OMAs. As shown in Figure 2A, DOM has an EDC of 3963 ±

207 μmol e− g−1 C and an EAC of 659 ± 41 μmol e− g−1 C.
Previous studies showed that EDC is primarily determined by
the phenol content and EAC largely reflects the number of
quinones.36,37 Therefore, the much higher EDC than EAC in
our DOM sample indicates high phenols and low quinones,
potentially due to the high lignin content in the Schönbuch
forest soil where the DOM was extracted from.37 The same
trend of EDC versus EAC was also found in some standard
humic substances such as the Washkish Peat Humic Acid
(WPHA), which was isolated from a sphagnum bog containing
poorly degraded materials such as lignin.37 Interestingly,
although being isolated from the same soil, in contrast to
DOM, the OMA samples showed a similar EDC (1164 ± 82
μmol e− g−1 C) and EAC (1416 ± 200 μmol e− g−1 C) (Figure
2A). We believe that the high EAC in the OMAs can be
attributed to the presence of electron-accepting minerals such
as Fe(III) in the OMAs. Moreover, compared to the electron
exchange capacity (EEC: EAC + EDC) of DOM (4622 μmol
e− g−1 C), the EEC of the OMAs (2580 μmol e− g−1 C) is
much smaller, indicating a smaller density of electron-donating
and accepting moieties on the surface of OMAs than that of
DOM.

Synergistic Effect of DOM and OMAs in Enabling
Long-Distance Electron Transfer. Electron transfer over a 2
cm distance between S. oneidensis MR-1 and ferrihydrite was
monitored over time. In the biotic controls (i.e., experiments
without the addition of DOM or OMAs), no significant
ferrihydrite reduction was detected, demonstrating that the
solidified agar successfully prevented direct microbial ferrihy-
drite reduction. In contrast, up to 50% ferrihydrite reduction
took place in experiments amended with DOM and OMAs,
demonstrating their abilities in mediating long-distance
electron transfer. In the treatments with a fixed DOM
concentration (50 mg C L−1), no significant ferrihydrite
reduction was observed without the addition of OMAs.
Increasing the OMA concentrations from 160 to 800 to
1600 mg L−1 increased the extent of ferrihydrite reduction
from 6.83 ± 0.57% to 12.98 ± 3.40% to 21.78 ± 2.90% (Figure
2B). A similar result was also found in the reversed
experiments where we fixed the OMA concentration at 800
mg C L−1 (Figure 2C). In the absence of DOM, no significant
ferrihydrite reduction was observed. By increasing the amount
of DOM from 25 to 50 to 100 mg L−1, however, the
ferrihydrite reduction increased from 9.99 ± 0.73% to 12.98 ±
1.13% to 49.13 ± 4.87%, respectively.

Notably, significant ferrihydrite reduction occurred only
when DOM and OMAs were present together. These results
revealed, for the first time, that electron transfer at cm scales
can occur with DOM and OMAs as electron mediators.
Moreover, a synergistic effect occurred between DOM and
OMAs, probably by the formation of a redox-cycling network
that allowed a higher number of transferred electrons per time
in comparison with either DOM or OMAs alone. Such a
synergistic effect is in line with a diffusion-electron hopping
mechanism18 through which the diffusion of DOM could be
largely shortened via electron hopping of OMAs, thus
enhancing the overall electron transfer process.15

Electron Transfer Kinetics as a Function of the Ratio
of DOM and OMAs. Based on the data shown in Figure 2B,
C, we evaluated how the DOM:OMAs ratios affected the
extent (Figure 3A) and rate (Figure S4) of ferrihydrite
reduction. In general, the correlation between both the extent
and rate of ferrihydrite reduction and DOM:OMAs ratios were

Figure 2. (A) Electron exchange capacity (EEC), the sum of electron-
donating capacity (EDC) and electron-accepting capacity (EAC) of
the DOM and OMAs extracted from the Schönbuch forest soil. All
EDC and EAC values were normalized to the carbon content in
DOM and OMAs. Error bars represent the standard deviation of at
least four replicates. (B, C) Results from the microbial reduction of 10
mmol L−1 ferrihydrite by 108 cells mL−1 of Shewanella oneidensis MR-
1 in the presence of 10 mmol L−1 lactate as electron donor, 50 mg C
L−1 DOM with different concentrations of OMAs (B) or 800 mg C
L−1 OMAs with varies concentrations of DOM (C) were used as
electron shuttles. All experiments were conducted with the agar-
solidified reactor as shown in Figure S1 with a 2 cm shuttling distance
and incubated at 30 °C in the dark. At each sampling point, the
ferrihydrite agar ball located at the bottle’s center was taken out and
dissolved in 1 M HCl for 1 h in an anoxic glovebox (100% N2) for Fe
extraction, and the Fe(II) and Fe(total) concentrations in the agar-
ferrihydrite ball were quantified using the spectrophotometric
ferrozine assay.38 Data are means from triplicate bottles ± standard
deviation, shown as the ratio of Fe(II) to Fe (total) in the ferrihydrite.
The data set of DOM concentration as 50 mg C L−1 and OMA
concentration as 800 mg C L−1 (orange circle) are from one single
experiment and are identical in panels B and C.
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positive and showed high similarity. Yet, it should be noted
that, even with the same ratio of DOM:OMAs, the absolute
amount of DOM and OMAs also impacted the electron
transfer rate. For example, although the treatment with a DOM
concentration of 50 mg C L−1 and an OMA concentration of
1600 mg C L−1 and the treatment with a DOM concentration
of 25 mg C L−1 and an OMA concentration of 800 mg C L−1

both resulted in a DOM:OMAs ratio of 0.03, the treatment
with higher DOM and OMA content resulted in faster electron
transfer kinetics (21.78 ± 2.90% ferrihydrite reduction)
compared to the treatment with lower DOM and OMA
content (9.99 ± 0.73% ferrihydrite reduction). The same
phenomenon can also be found in the experiment having a
DOM concentration of 50 mg C L−1 and an OMA
concentration of 160 mg C L−1. Although it resulted in a
high DOM:OMAs ratio of 0.31, the generally low absolute
amount of DOM and OMAs led to a markedly lower extent
and rate of ferrihydrite reduction as compared to the other
experiments (Figures 3A and S4). These results indicate that
both the DOM:OMAs ratio and their absolute content should
be considered for a comprehensive assessment of the electron
transfer processes of DOM and OMAs.

Furthermore, we also evaluated correlations between the
extent of ferrihydrite reduction and both the DOM:OMAs
ratios and the OMAs:DOM ratios (Figure 3B). Whereas the
OMAs:DOM ratios were calculated from the experiments with
fixed DOM concentration and variable OMA concentrations
(Figure 2B), the DOM:OMAs ratios were obtained from the
experiments with fixed OMA concentration but varying DOM
concentrations (Figure 2C). Although positive correlations
were found between the extent of ferrihydrite reduction and
both the DOM:OMAs and OMAs:DOM ratios, DOM:OMAs
ratios were more decisive in accelerating ferrihydrite reduction,
as evidenced by the higher slope of DOM:OMAs (397.64)
than that of OMAs:DOM (0.64) in Figure 3B. These findings
suggest that DOM played a more important role in the rate of
redox cycling of the DOM and OMA network and thus

dominated the overall electron transfer kinetics, which
potentially results from its high EEC as shown in Figure 2A.

Implications. Previous studies investigated the electron
transfer processes of DOM39−41 and POM3,42 as well as the
combination of both.14 However, OMA has long been
overlooked despite its wide distribution in the environ-
ment.43,44 The lack of studies regarding the electron transfer
by OMAs might be due to the well-accepted concept that the
organic matter in OMAs is protected from microbial and
chemical decomposition.10,30 Our study, however, shows that
OMAs are redox active and can interact with DOM to
constitute a network that promotes electron transfer over cm
distances. Such long-distance electron transfer can impact
other biogeochemical processes such as microbial Fe(III)-
mineral reduction, which further affects the fate of contami-
nants such as arsenic (As), chromium (Cr), and uranium
(U).45−47 Fe(II) produced by Fe(III) reduction can be
coupled to the degradation of organic contaminants including
polyhalogenated compounds, nitroaromatics, and azo dyes.45

Additionally, Fe(III)-mineral reduction can compete for
electron transfer to methanogens and nitrate- and sulfate-
reducing bacteria, thereby inhibiting greenhouse gas emis-
sions.48 With the increasing frequency of redox fluctuations
due to alternating extreme drought and precipitation events,49

we call for future studies to take such long-distance electron
transfer into consideration when studying biogeochemical
elemental cycling and the carbon budget estimates in the
environment.
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Stefan Fischer − Tübingen Structural Microscopy Core
Facility (TSM), University of Tübingen, 72076 Tübingen,
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gratefully acknowledge the Tübingen Structural Microscopy
Core Facility (Funded by the Federal Ministry of Education
and Research (BMBF) and the Baden-Württemberg Ministry
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